While many advancements have been made in the development of template models for describing upright-trunk locomotion, the majority of the effort has been focused on the stance phase. In this paper, we develop a new compact dynamic model as a first step toward a fully unified locomotion template model (ULT-model) of an upright-trunk forward hopping system, which will also require a unified control law in the next step. We demonstrate that all locomotion subfunctions are enabled by adding just a point foot mass and a parallel leg actuator to the well-known trunk SLIP model and that a stable limit cycle can be achieved. This brings us closer toward the ultimate goal of enabling closed-loop dynamics for anchor matching and thus achieving simple, efficient, robust and stable upright-trunk gait control, as observed in biological systems.