This study investigates a decentralized linear-quadratic optimal control problem, and several approximate separable constrained optimization problems are formulated for the first time based on the selection of sparsity promoting functions. First, for the optimization problem with weighted $\ell_1$ sparsity promoting function, a two-timescale algorithm is adopted that is based on the BSUM (Block Successive Upper-bound Minimization) framework and a differential equation solver. Second, a piecewise quadratic sparsity promoting function is introduced, and the induced optimization problem demonstrates an accelerated convergence rate by performing the same two-timescale algorithm. Finally, the optimization problem with $\ell_0$ sparsity promoting function is considered that is nonconvex and discontinuous, and can be approximated by successive coordinatewise convex optimization problems.