Reinforcement learning (RL) control approach with application into power electronics systems has become an emerging topic whilst the sim-to-real issue remains a challenging problem as very few results can be referred to in the literature. Indeed, due to the inevitable mismatch between simulation models and real-life systems, offline trained RL control strategies may sustain unexpected hurdles in practical implementation during transferring procedure. As the main contribution of this paper, a transferring methodology via a delicately designed duty ratio mapping (DRM) is proposed for a DC-DC buck converter. Then, a detailed sim-to-real process is presented to enable the implementation of a model-free deep reinforcement learning (DRL) controller. The feasibility and effectiveness of the proposed methodology are demonstrated by comparative experimental studies.