Deep learning (DL) algorithms have been widely applied to short-term voltage stability (STVS) assessment in power systems. However, transferring the knowledge learned in one power grid to other power grids with topology changes is still a challenging task. This paper proposed a transferable DL-based model for STVS assessment by constructing the topology-aware voltage dynamic features from raw PMU data. Since the reactive power flow and grid topology are essential to voltage stability, the topology-aware and physics-informed voltage dynamic features are utilized to effectively represent the topological and temporal patterns from post-disturbance system dynamic trajectories. The proposed DL-based STVS assessment model is tested under random operating conditions on the New England 39-bus system. It has 99.99\% classification accuracy of the short-term voltage stability status using the topology-aware and physics-informed voltage dynamic features. In addition to high accuracy, the experiments show good adaptability to PMU errors. Moreover, The proposed STVS assessment method has outstanding performance on new grid topologies after fine-tuning. In particular, the highest accuracy reaches 99.68\% in evaluation, which demonstrates a good knowledge transfer ability of the proposed model for power grid topology change.