robustness.To solve this, we propose \textit{DiffTextPure}, a general defense that diffuses the (adversarial) input prompt using any pre-defined smoothing distribution, and purifies the diffused input using a pre-trained language model. Theoretically, we derive tight robustness lower bounds for all smoothing distributions using Fractal Knapsack or 0-1 Knapsack solvers. Under this framework, we certify the robustness of a specific case -- smoothing LLMs using a uniform kernel -- against \textit{any possible attack} with an average $\ell_0$ perturbation of 2.02 or an average suffix length of 6.41.
Recent studies have revealed the vulnerability of Large Language Models (LLMs) to adversarial attacks, where the adversary crafts specific input sequences to induce harmful, violent, private, or incorrect outputs. Although various defenses have been proposed, they have not been evaluated by strong adaptive attacks, leaving the worst-case robustness of LLMs still intractable. By developing a stronger white-box attack, our evaluation results indicate that most typical defenses achieve nearly 0\%