As deep learning models increasingly find applications in critical domains such as medical imaging, the need for transparent and trustworthy decision-making becomes paramount. Many explainability methods provide insights into how these models make predictions by attributing importance to input features. As Vision Transformer (ViT) becomes a promising alternative to convolutional neural networks for image classification, its interpretability remains an open research question. This paper investigates the performance of various interpretation methods on a ViT applied to classify chest X-ray images. We introduce the notion of evaluating faithfulness, sensitivity, and complexity of ViT explanations. The obtained results indicate that Layerwise relevance propagation for transformers outperforms Local interpretable model-agnostic explanations and Attention visualization, providing a more accurate and reliable representation of what a ViT has actually learned. Our findings provide insights into the applicability of ViT explanations in medical imaging and highlight the importance of using appropriate evaluation criteria for comparing them.