Test automation has become increasingly important as the complexity of both design and content in Human Machine Interface (HMI) software continues to grow. Current standard practice uses Optical Character Recognition (OCR) techniques to automatically extract textual information from HMI screens for validation. At present, one of the key challenges faced during the automation of HMI screen validation is the noise handling for the OCR models. In this paper, we propose to utilize adversarial training techniques to enhance OCR models in HMI testing scenarios. More specifically, we design a new adversarial attack objective for OCR models to discover the decision boundaries in the context of HMI testing. We then adopt adversarial training to optimize the decision boundaries towards a more robust and accurate OCR model. In addition, we also built an HMI screen dataset based on real-world requirements and applied multiple types of perturbation onto the clean HMI dataset to provide a more complete coverage for the potential scenarios. We conduct experiments to demonstrate how using adversarial training techniques yields more robust OCR models against various kinds of noises, while still maintaining high OCR model accuracy. Further experiments even demonstrate that the adversarial training models exhibit a certain degree of robustness against perturbations from other patterns.