The problem of fake news has gained a lot of attention as it is claimed to have had a significant impact on 2016 US Presidential Elections. Fake news is not a new problem and its spread in social networks is well-studied. Often an underlying assumption in fake news discussion is that it is written to look like real news, fooling the reader who does not check for reliability of the sources or the arguments in its content. Through a unique study of three data sets and features that capture the style and the language of articles, we show that this assumption is not true. Fake news in most cases is more similar to satire than to real news, leading us to conclude that persuasion in fake news is achieved through heuristics rather than the strength of arguments. We show overall title structure and the use of proper nouns in titles are very significant in differentiating fake from real. This leads us to conclude that fake news is targeted for audiences who are not likely to read beyond titles and is aimed at creating mental associations between entities and claims.