Reinforcement Learning algorithms designed for high-dimensional spaces often enforce the Bellman equation on a sampled subset of states, relying on generalization to propagate knowledge across the state space. In this paper, we identify and formalize a fundamental limitation of this common approach. Specifically, we construct counterexample problems with a simple structure that this approach fails to exploit. Our findings reveal that such algorithms can neglect critical information about the problems, leading to inefficiencies. Furthermore, we extend this negative result to another approach from the literature: Hindsight Experience Replay learning state-to-state reachability.