The paper develops the Adaptive Dynamic Programming Toolbox (ADPT), which solves optimal control problems for continuous-time nonlinear systems. Based on the adaptive dynamic programming technique, the ADPT computes optimal feedback controls from the system dynamics in the model-based working mode, or from measurements of trajectories of the system in the model-free working mode without the requirement of knowledge of the system model. Multiple options are provided such that the ADPT can accommodate various customized circumstances. Compared to other popular software toolboxes for optimal control, the ADPT enjoys its computational precision and speed, which is illustrated with its applications to a satellite attitude control problem.