Session-based recommendation (SBR) is a challenging task, which aims at recommending next items based on anonymous interaction sequences. Despite the superior performance of existing methods for SBR, there are still several limitations: (i) Almost all existing works concentrate on single interest extraction and fail to disentangle multiple interests of user, which easily results in suboptimal representations for SBR. (ii) Furthermore, previous methods also ignore the multi-form temporal information, which is significant signal to obtain current intention for SBR. To address the limitations mentioned above, we propose a novel method, called \emph{Temporal aware Multi-Interest Graph Neural Network} (TMI-GNN) to disentangle multi-interest and yield refined intention representations with the injection of two level temporal information. Specifically, by appending multiple interest nodes, we construct a multi-interest graph for current session, and adopt the GNNs to model the item-item relation to capture adjacent item transitions, item-interest relation to disentangle the multi-interests, and interest-item relation to refine the item representation. Meanwhile, we incorporate item-level time interval signals to guide the item information propagation, and interest-level time distribution information to assist the scattering of interest information. Experiments on three benchmark datasets demonstrate that TMI-GNN outperforms other state-of-the-art methods consistently.