Existing large language models struggle to support numerous low-resource languages, particularly the extremely low-resource ones where there is minimal training data available for effective parameter updating. We thus investigate whether LLMs can learn a new language on the fly solely through prompting. To study this question, we collect a research suite for Zhuang, a language supported by no LLMs currently. We introduce \textsc{DiPMT++}, a framework for adapting LLMs to unseen languages by in-context learning. Using a dictionary and only 5K parallel sentences, \textsc{DiPMT++} significantly enhances the performance of GPT-4 from 0 to 16 BLEU for Chinese-to-Zhuang translation and achieves 32 BLEU for Zhuang-to-Chinese translation. Furthermore, we demonstrate the practical utility of this framework in aiding humans to translate completely unseen languages, which could contribute to the preservation of linguistic diversity.