We present TACTIC: Task-Aware Compression Through Intelligent Coding. Our lossy compression model learns based on the rate-distortion-accuracy trade-off for a specific task. By considering what information is important for the follow-on problem, the system trades off visual fidelity for good task performance at a low bitrate. When compared against JPEG at the same bitrate, our approach is able to improve the accuracy of ImageNet subset classification by 4.5%. We also demonstrate the applicability of our approach to other problems, providing a 3.4% accuracy and 4.9% mean IoU improvements in performance over task-agnostic compression for semantic segmentation.