A susceptibility propagation that is constructed by combining a belief propagation and a linear response method is used for approximate computation for Markov random fields. Herein, we formulate a new, improved susceptibility propagation by using the concept of a diagonal matching method that is based on mean-field approaches to inverse Ising problems. The proposed susceptibility propagation is robust for various network structures, and it is reduced to the ordinary susceptibility propagation and to the adaptive Thouless-Anderson-Palmer equation in special cases.