We introduce a framework to leverage knowledge acquired from a repository of (heterogeneous) supervised datasets to new unsupervised datasets. Our perspective avoids the subjectivity inherent in unsupervised learning by reducing it to supervised learning, and provides a principled way to evaluate unsupervised algorithms. We demonstrate the versatility of our framework via simple agnostic bounds on unsupervised problems. In the context of clustering, our approach helps choose the number of clusters and the clustering algorithm, remove the outliers, and provably circumvent the Kleinberg's impossibility result. Experimental results across hundreds of problems demonstrate improved performance on unsupervised data with simple algorithms, despite the fact that our problems come from heterogeneous domains. Additionally, our framework lets us leverage deep networks to learn common features from many such small datasets, and perform zero shot learning.