Recently introduced zero-shot self-supervised learning (ZS-SSL) has shown potential in accelerated MRI in a scan-specific scenario, which enabled high-quality reconstructions without access to a large training dataset. ZS-SSL has been further combined with the subspace model to accelerate 2D T2-shuffling acquisitions. In this work, we propose a parallel network framework and introduce an attention mechanism to improve subspace-based zero-shot self-supervised learning and enable higher acceleration factors. We name our method SubZero and demonstrate that it can achieve improved performance compared with current methods in T1 and T2 mapping acquisitions.