In interactive multi-agent settings, decision-making complexity arises from agents' interconnected objectives. Dynamic game theory offers a formal framework for analyzing such intricacies. Yet, solving dynamic games and determining Nash equilibria pose computational challenges due to the need of solving coupled optimal control problems. To address this, our key idea is to leverage potential games, which are games with a potential function that allows for the computation of Nash equilibria by optimizing the potential function. We argue that dynamic potential games, can effectively facilitate interactive decision-making in many multi-agent interactions. We will identify structures in realistic multi-agent interactive scenarios that can be transformed into weighted potential dynamic games. We will show that the open-loop Nash equilibria of the resulting weighted potential dynamic game can be obtained by solving a single optimal control problem. We will demonstrate the effectiveness of the proposed method through various simulation studies, showing close proximity to feedback Nash equilibria and significant improvements in solve time compared to state-of-the-art game solvers.