Under various poses and heavy occlusions,3D hand model reconstruction based on a single monocular RGB image has been a challenging problem in computer vision field for many years. In this paper, we propose a SR-Affine approach for high-quality 3D hand model reconstruction. First, we propose an encoder-decoder network architecture (AffineNet) for MANO hand reconstruction. Since MANO hand is not detailed, we further propose SRNet to up-sampling point-clouds by image super-resolution on the UV map. Many experiments demonstrate that our approach is robust and outperforms the state-of-the-art methods on standard benchmarks, including the FreiHAND and HO3D datasets.