We study the complexity of learning mixtures of separated Gaussians with common unknown bounded covariance matrix. Specifically, we focus on learning Gaussian mixture models (GMMs) on $\mathbb{R}^d$ of the form $P= \sum_{i=1}^k w_i \mathcal{N}(\boldsymbol \mu_i,\mathbf \Sigma_i)$, where $\mathbf \Sigma_i = \mathbf \Sigma \preceq \mathbf I$ and $\min_{i \neq j} \| \boldsymbol \mu_i - \boldsymbol \mu_j\|_2 \geq k^\epsilon$ for some $\epsilon>0$. Known learning algorithms for this family of GMMs have complexity $(dk)^{O(1/\epsilon)}$. In this work, we prove that any Statistical Query (SQ) algorithm for this problem requires complexity at least $d^{\Omega(1/\epsilon)}$. In the special case where the separation is on the order of $k^{1/2}$, we additionally obtain fine-grained SQ lower bounds with the correct exponent. Our SQ lower bounds imply similar lower bounds for low-degree polynomial tests. Conceptually, our results provide evidence that known algorithms for this problem are nearly best possible.