This paper investigates the best arm identification (BAI) problem in stochastic multi-armed bandits in the fixed confidence setting. The general class of the exponential family of bandits is considered. The state-of-the-art algorithms for the exponential family of bandits face computational challenges. To mitigate these challenges, a novel framework is proposed, which views the BAI problem as sequential hypothesis testing, and is amenable to tractable analysis for the exponential family of bandits. Based on this framework, a BAI algorithm is designed that leverages the canonical sequential probability ratio tests. This algorithm has three features for both settings: (1) its sample complexity is asymptotically optimal, (2) it is guaranteed to be $\delta-$PAC, and (3) it addresses the computational challenge of the state-of-the-art approaches. Specifically, these approaches, which are focused only on the Gaussian setting, require Thompson sampling from the arm that is deemed the best and a challenger arm. This paper analytically shows that identifying the challenger is computationally expensive and that the proposed algorithm circumvents it. Finally, numerical experiments are provided to support the analysis.