Significance: Dynamic photoacoustic computed tomography (PACT) is a valuable technique for monitoring physiological processes. However, current dynamic PACT techniques are often limited to 2D spatial imaging. While volumetric PACT imagers are commercially available, these systems typically employ a rotating gantry in which the tomographic data are sequentially acquired. Because the object varies during the data-acquisition process, the sequential data-acquisition poses challenges to image reconstruction associated with data incompleteness. The proposed method is highly significant in that it will address these challenges and enable volumetric dynamic PACT imaging with existing imagers. Aim: The aim of this study is to develop a spatiotemporal image reconstruction (STIR) method for dynamic PACT that can be applied to commercially available volumetric PACT imagers that employ a sequential scanning strategy. The proposed method aims to overcome the challenges caused by the limited number of tomographic measurements acquired per frame. Approach: A low-rank matrix estimation-based STIR method (LRME-STIR) is proposed to enable dynamic volumetric PACT. The LRME-STIR method leverages the spatiotemporal redundancies to accurately reconstruct a 4D spatiotemporal image. Results: The numerical studies substantiate the LRME-STIR method's efficacy in reconstructing 4D dynamic images from measurements acquired with a rotating gantry. The experimental study demonstrates the method's ability to faithfully recover the flow of a contrast agent at a frame rate of 0.1 s even when only a single tomographic measurement per frame is available. Conclusions: The LRME-STIR method offers a promising solution to the challenges faced by enabling 4D dynamic imaging using commercially available volumetric imagers. By enabling accurate 4D reconstruction, this method has the potential to advance preclinical research.