Leveraging the inherent connection between sensing systems and wireless communications can improve their overall performance and is the core objective of joint communications and sensing. For effective communications, one has to frequently estimate the channel. Sensing, on the other hand, infers properties of the environment mostly based on estimated physical channel parameters, such as directions of arrival or delays. This work presents a low-complexity generative modeling approach that simultaneously estimates the wireless channel and its physical parameters without additional computational overhead. To this end, we leverage a recently proposed physics-informed generative model for wireless channels based on sparse Bayesian generative modeling and exploit the feature of conditionally Gaussian generative models to approximate the conditional mean estimator.