In this paper, we apply star-Digital Gabor Transform in analysis Compressed Sensing and speech denoising. Based on assumptions on the ambient dimension, we produce a window vector that generates a spark deficient Gabor frame with many linear dependencies among its elements. We conduct computational experiments on both synthetic and real-world signals, using as baseline three Gabor transforms generated by state-of-the-art window vectors and compare their performance to star-Gabor transform. Results show that the proposed star-Gabor transform outperforms all others in all signal cases.