We consider determinantal point processes (DPPs) constrained by spanning trees. Given a graph $G=(V,E)$ and a positive semi-definite matrix $\mathbf{A}$ indexed by $E$, a spanning-tree DPP defines a distribution such that we draw $S\subseteq E$ with probability proportional to $\det(\mathbf{A}_S)$ only if $S$ induces a spanning tree. We prove $\sharp\textsf{P}$-hardness of computing the normalizing constant for spanning-tree DPPs and provide an approximation-preserving reduction from the mixed discriminant, for which FPRAS is not known. We show similar results for DPPs constrained by forests.