Space poses significant challenges for human physiology, leading to physiological adaptations in response to an environment vastly different from Earth. While these adaptations can be beneficial, they may not fully counteract the adverse impact of space-related stressors. A comprehensive understanding of these physiological adaptations is needed to devise effective countermeasures to support human life in space. This review focuses on the impact of the environment in space on the musculoskeletal system. It highlights the complex interplay between bone and muscle adaptation, the underlying physiological mechanisms, and their implications on astronaut health. Furthermore, the review delves into the deployed and current advances in countermeasures and proposes, as a perspective for future developments, wearable sensing and robotic technologies, such as exoskeletons, as a fitting alternative.