https://github.com/yeyimilk/llm-zero-shot-classifiers.
Text classification is a fundamental task in Natural Language Processing (NLP), and the advent of Large Language Models (LLMs) has revolutionized the field. This paper introduces the Smart Expert System, a novel approach that leverages LLMs as text classifiers. The system simplifies the traditional text classification workflow, eliminating the need for extensive preprocessing and domain expertise. The performance of several LLMs, machine learning (ML) algorithms, and neural network (NN) based structures is evaluated on four datasets. Results demonstrate that certain LLMs surpass traditional methods in sentiment analysis, spam SMS detection and multi-label classification. Furthermore, it is shown that the system's performance can be further enhanced through few-shot or fine-tuning strategies, making the fine-tuned model the top performer across all datasets. Source code and datasets are available in this GitHub repository: