We propose a Small, Accurate, and Fast Re-ID (SAFR) design for flexible vehicle re-id under a variety of compute environments such as cloud, mobile, edge, or embedded devices by only changing the re-id model backbone. Through best-fit design choices, feature extraction, training tricks, global attention, and local attention, we create a reid model design that optimizes multi-dimensionally along model size, speed, & accuracy for deployment under various memory and compute constraints. We present several variations of our flexible SAFR model: SAFR-Large for cloud-type environments with large compute resources, SAFR-Small for mobile devices with some compute constraints, and SAFR-Micro for edge devices with severe memory & compute constraints. SAFR-Large delivers state-of-the-art results with mAP 81.34 on the VeRi-776 vehicle re-id dataset (15% better than related work). SAFR-Small trades a 5.2% drop in performance (mAP 77.14 on VeRi-776) for over 60% model compression and 150% speedup. SAFR-Micro, at only 6MB and 130MFLOPS, trades 6.8% drop in accuracy (mAP 75.80 on VeRi-776) for 95% compression and 33x speedup compared to SAFR-Large.