Brain-inspired spiking neuron networks (SNNs) have attracted widespread research interest due to their low power features, high biological plausibility, and strong spatiotemporal information processing capability. Although adopting a surrogate gradient (SG) makes the non-differentiability SNN trainable, achieving comparable accuracy for ANNs and keeping low-power features simultaneously is still tricky. In this paper, we proposed an energy-efficient spike-train level spiking neural network (SLSSNN) with low computational cost and high accuracy. In the SLSSNN, spatio-temporal conversion blocks (STCBs) are applied to replace the convolutional and ReLU layers to keep the low power features of SNNs and improve accuracy. However, SLSSNN cannot adopt backpropagation algorithms directly due to the non-differentiability nature of spike trains. We proposed a suitable learning rule for SLSSNNs by deducing the equivalent gradient of STCB. We evaluate the proposed SLSSNN on static and neuromorphic datasets, including Fashion-Mnist, Cifar10, Cifar100, TinyImageNet, and DVS-Cifar10. The experiment results show that our proposed SLSSNN outperforms the state-of-the-art accuracy on nearly all datasets, using fewer time steps and being highly energy-efficient.