This paper proposes a novel methodology for addressing the simulation-reality gap for multi-robot swarm systems. Rather than immediately try to shrink or `bridge the gap' anytime a real-world experiment failed that worked in simulation, we characterize conditions under which this is actually necessary. When these conditions are not satisfied, we show how very simple simulators can still be used to both (i) design new multi-robot systems, and (ii) guide real-world swarming experiments towards certain emergent behaviors when the gap is very large. The key ideas are an iterative simulator-in-the-design-loop in which real-world experiments, simulator modifications, and simulated experiments are intimately coupled in a way that minds the gap without needing to shrink it, as well as the use of minimally viable phase diagrams to guide real world experiments. We demonstrate the usefulness of our methods on deploying a real multi-robot swarm system to successfully exhibit an emergent milling behavior.