Simultaneous wireless information and power transfer (SWIPT) has been proposed to offer communication services and transfer power to the energy harvesting receiver (EHR) concurrently. However, existing works mainly focused on static EHRs, without considering the location uncertainty caused by the movement of EHRs and location estimation errors. To tackle this issue, this paper considers the sensing-assisted SWIPT design in a networked integrated sensing and communication (ISAC) system in the presence of location uncertainty. A two-phase robust design is proposed to reduce the location uncertainty and improve the power transfer efficiency. In particular, each time frame is divided into two phases, i.e., sensing and WPT phases, via time-splitting. The sensing phase performs collaborative sensing to localize the EHR, whose results are then utilized in the WPT phase for efficient WPT. To minimize the power consumption with given communication and power transfer requirements, a two-layer optimization framework is proposed to jointly optimize the time-splitting ratio, coordinated beamforming policy, and sensing node selection. Simulation results validate the effectiveness of the proposed design and demonstrate the existence of an optimal time-splitting ratio for given location uncertainty.