Large Language Models (LLMs) have spurred progress in text-to-SQL, the task of generating SQL queries from natural language questions based on a given database schema. Despite the declarative nature of SQL, it continues to be a complex programming language. In this paper, we investigate the potential of an alternative query language with simpler syntax and modular specification of complex queries. The purpose is to create a query language that can be learned more easily by modern neural semantic parsing architectures while also enabling non-programmers to better assess the validity of the query plans produced by an interactive query plan assistant. The proposed alternative query language is called Query Plan Language (QPL). It is designed to be modular and can be translated into a restricted form of SQL Common Table Expressions (CTEs). The aim of QPL is to make complex data retrieval accessible to non-programmers by allowing users to express their questions in natural language while also providing an easier-to-verify target language. The paper demonstrates how neural LLMs can benefit from QPL's modularity to generate complex query plans in a compositional manner. This involves a question decomposition strategy and a planning stage. We conduct experiments on a version of the Spider text-to-SQL dataset that has been converted to QPL. The hierarchical structure of QPL programs enables us to measure query complexity naturally. Based on this assessment, we identify the low accuracy of existing text-to-SQL systems on complex compositional queries. We present ways to address the challenge of complex queries in an iterative, user-controlled manner, using fine-tuned LLMs and a variety of prompting strategies in a compositional manner.