The past few years have witnessed the prevalence of self-supervised representation learning within the language and 2D vision communities. However, such advancements have not been fully migrated to the community of 3D point cloud learning. Different from previous pre-training pipelines for 3D point clouds that generally fall into the scope of either generative modeling or contrastive learning, in this paper, we investigate a translative pre-training paradigm, namely PointVST, driven by a novel self-supervised pretext task of cross-modal translation from an input 3D object point cloud to its diverse forms of 2D rendered images (e.g., silhouette, depth, contour). Specifically, we begin with deducing view-conditioned point-wise embeddings via the insertion of the viewpoint indicator, and then adaptively aggregate a view-specific global codeword, which is further fed into the subsequent 2D convolutional translation heads for image generation. We conduct extensive experiments on common task scenarios of 3D shape analysis, where our PointVST shows consistent and prominent performance superiority over current state-of-the-art methods under diverse evaluation protocols. Our code will be made publicly available.