Interactive Segmentation Models (ISMs) like the Segment Anything Model have significantly improved various computer vision tasks, yet their application to Person Re-identification (ReID) remains limited. On the other hand, existing semantic pre-training models for ReID often have limitations like predefined parsing ranges or coarse semantics. Additionally, ReID and Clothes-Changing ReID (CC-ReID) are usually treated separately due to their different domains. This paper investigates whether utilizing precise human-centric semantic representation can boost the ReID performance and improve the generalization among various ReID tasks. We propose SemReID, a self-supervised ReID model that leverages ISMs for adaptive part-based semantic extraction, contributing to the improvement of ReID performance. SemReID additionally refines its semantic representation through techniques such as image masking and KoLeo regularization. Evaluation across three types of ReID datasets -- standard ReID, CC-ReID, and unconstrained ReID -- demonstrates superior performance compared to state-of-the-art methods. In addition, recognizing the scarcity of large person datasets with fine-grained semantics, we introduce the novel LUPerson-Part dataset to assist ReID methods in acquiring the fine-grained part semantics for robust performance.