Objective. Graphical abstracts are small graphs of concepts that visually summarize the main findings of scientific articles. While graphical abstracts are customarily used in scientific publications to anticipate and summarize their main results, we propose them as a means for expressing graph searches over existing literature. Materials and methods. We consider the COVID-19 Open Research Dataset (CORD-19), a corpus of more than one million abstracts; each of them is described as a graph of co-occurring ontological terms, selected from the Unified Medical Language System (UMLS) and the Ontology of Coronavirus Infectious Disease (CIDO). Graphical abstracts are also expressed as graphs of ontological terms, possibly augmented by utility terms describing their interactions (e.g., "associated with", "increases", "induces"). We build a co-occurrence network of concepts mentioned in the corpus; we then identify the best matches of graphical abstracts on the network. We exploit graph database technology and shortest-path queries. Results. We build a large co-occurrence network, consisting of 128,249 entities and 47,198,965 relationships. A well-designed interface allows users to explore the network by formulating or adapting queries in the form of an abstract; it produces a bibliography of publications, globally ranked; each publication is further associated with the specific parts of the abstract that it explains, thereby allowing the user to understand each aspect of the matching. Discussion and Conclusion. Our approach supports the process of scientific hypothesis formulation and evidence search; it can be reapplied to any scientific domain, although our mastering of UMLS makes it most suited to clinical domains.