Current GNN-oriented NAS methods focus on the search for different layer aggregate components with shallow and simple architectures, which are limited by the 'over-smooth' problem. To further explore the benefits from structural diversity and depth of GNN architectures, we propose a GNN generation pipeline with a novel two-stage search space, which aims at automatically generating high-performance while transferable deep GNN models in a block-wise manner. Meanwhile, to alleviate the 'over-smooth' problem, we incorporate multiple flexible residual connection in our search space and apply identity mapping in the basic GNN layers. For the search algorithm, we use deep-q-learning with epsilon-greedy exploration strategy and reward reshaping. Extensive experiments on real-world datasets show that our generated GNN models outperforms existing manually designed and NAS-based ones.