Single-cell RNA sequencing (scRNA-seq) data are important for studying the biology of development or diseases at single-cell level. To better understand the properties of the data, to build controlled benchmark data for testing downstream methods, and to augment data when collecting sufficient real data is challenging, generative models have been proposed to computationally generate synthetic scRNA-seq data. However, the data generated with current models are not very realistic yet, especially when we need to generate data with controlled conditions. In the meantime, the Diffusion models have shown their power in generating data in computer vision at high fidelity, providing a new opportunity for scRNA-seq generation. In this study, we developed scDiffusion, a diffusion-based model to generate high-quality scRNA-seq data with controlled conditions. We designed multiple classifiers to guide the diffusion process simultaneously, enabling scDiffusion to generate data under multiple condition combinations. We also proposed a new control strategy called Gradient Interpolation. This strategy allows the model to generate continuous trajectories of cell development from a given cell state. Experiments showed that scDiffusion can generate single-cell gene expression data closely resembling real scRNA-seq data, surpassing state-of-the-art models in multiple metrics. Also, scDiffusion can conditionally produce data on specific cell types including rare cell types. Furthermore, we could use the multiple-condition generation of scDiffusion to generate cell type that was out of the training data. Leveraging the Gradient Interpolation strategy, we generated a continuous developmental trajectory of mouse embryonic cells. These experiments demonstrate that scDiffusion is a powerful tool for augmenting the real scRNA-seq data and can provide insights into cell fate research.