This work explores the effect of noisy sample selection in active learning strategies. We show on both synthetic problems and real-life use-cases that knowledge of the sample noise can significantly improve the performance of active learning strategies. Building on prior work, we propose a robust sampler, Incremental Weighted K-Means that brings significant improvement on the synthetic tasks but only a marginal uplift on real-life ones. We hope that the questions raised in this paper are of interest to the community and could open new paths for active learning research.