Designing hierarchical reinforcement learning algorithms that induce a notion of safety is not only vital for safety-critical applications, but also, brings better understanding of an artificially intelligent agent's decisions. While learning end-to-end options automatically has been fully realized recently, we propose a solution to learning safe options. We introduce the idea of controllability of states based on the temporal difference errors in the option-critic framework. We then derive the policy-gradient theorem with controllability and propose a novel framework called safe option-critic. We demonstrate the effectiveness of our approach in the four-rooms grid-world, cartpole, and three games in the Arcade Learning Environment (ALE): MsPacman, Amidar and Q*Bert. Learning of end-to-end options with the proposed notion of safety achieves reduction in the variance of return and boosts the performance in environments with intrinsic variability in the reward structure. More importantly, the proposed algorithm outperforms the vanilla options in all the environments and primitive actions in two out of three ALE games.