Utilization of inter-base station cooperation for information processing has shown great potential in enhancing the overall quality of communication services (QoS) in wireless communication networks. Nevertheless, such cooperations require the knowledge of channel state information (CSI) at base stations (BSs), which is assumed to be perfectly known. However, CSI errors are inevitable in practice which necessitates beamforming techniques that can achieve robust performance in the presence of channel estimation errors. Existing approaches relax the robust beamforming design problems into semidefinite programming (SDP), which can only achieve a solution that is far from being optimal. To this end, this paper views robust beamforming design problems from a bilevel optimization perspective. In particular, we focus on maximizing the worst-case weighted sum-rate (WSR) in the downlink multi-cell multi-user multiple-input single-output (MISO) system considering bounded CSI errors. We first reformulate this problem into a bilevel optimization problem and then develop an efficient algorithm based on the cutting plane method. A distributed optimization algorithm has also been developed to facilitate the parallel processing in practical settings. Numerical results are provided to confirm the effectiveness of the proposed algorithm in terms of performance and complexity, particularly in the presence of CSI uncertainties.