The paper proposes the stable motion control law design method for non-honomic differential-drive mobile robot with system and measurement noise in discrete time domain. This method is performed basing on dividing operating configuration of robot into two parts: glocal and local configuration then the control law is designed following Lyapunov stable theory for two configuration. The proposed stable control laws is able to reach asymptotically stably to target position and orientation from any initial conditions even existing noise in the system. Some simulation results have demonstrated the effect of proposed method.