https://github.com/astooke/rlpyt.
Since the recent advent of deep reinforcement learning for game play and simulated robotic control, a multitude of new algorithms have flourished. Most are model-free algorithms which can be categorized into three families: deep Q-learning, policy gradients, and Q-value policy gradients. These have developed along separate lines of research, such that few, if any, code bases incorporate all three kinds. Yet these algorithms share a great depth of common deep reinforcement learning machinery. We are pleased to share rlpyt, which implements all three algorithm families on top of a shared, optimized infrastructure, in a single repository. It contains modular implementations of many common deep RL algorithms in Python using PyTorch, a leading deep learning library. rlpyt is designed as a high-throughput code base for small- to medium-scale research in deep RL. This white paper summarizes its features, algorithms implemented, and relation to prior work, and concludes with detailed implementation and usage notes. rlpyt is available at