In spite of being a valuable tool to simultaneously visualize multiple types of subcellular structures using spectrally distinct fluorescent labels, a standard fluoresce microscope is only able to identify a few microscopic objects; such a limit is largely imposed by the number of fluorescent labels available to the sample. In order to simultaneously visualize more objects, in this paper, we propose to use video-to-video translation that mimics the development process of microscopic objects. In essence, we use a microscopy video-to-video translation framework namely Spatial-temporal Generative Adversarial Network (STGAN) to reveal the spatial and temporal relationships between the microscopic objects, after which a microscopy video of one object can be translated to another object in a different domain. The experimental results confirm that the proposed STGAN is effective in microscopy video-to-video translation that mitigates the spectral conflicts caused by the limited fluorescent labels, allowing multiple microscopic objects be simultaneously visualized.