In recent years, convolutional neural networks (CNNs) have been applied successfully in many fields. However, such deep neural models are still regarded as black box in most tasks. One of the fundamental issues underlying this problem is understanding which features are most influential in image recognition tasks and how they are processed by CNNs. It is widely accepted that CNN models combine low-level features to form complex shapes until the object can be readily classified, however, several recent studies have argued that texture features are more important than other features. In this paper, we assume that the importance of certain features varies depending on specific tasks, i.e., specific tasks exhibit a feature bias. We designed two classification tasks based on human intuition to train deep neural models to identify anticipated biases. We devised experiments comprising many tasks to test these biases for the ResNet and DenseNet models. From the results, we conclude that (1) the combined effect of certain features is typically far more influential than any single feature; (2) in different tasks, neural models can perform different biases, that is, we can design a specific task to make a neural model biased toward a specific anticipated feature.