Traditional object detection are ill-equipped for incremental learning. However, fine-tuning directly on a well-trained detection model with only new data will leads to catastrophic forgetting. Knowledge distillation is a straightforward way to mitigate catastrophic forgetting. In Incremental Object Detection (IOD), previous work mainly focuses on feature-level knowledge distillation, but the different response of detector has not been fully explored yet. In this paper, we propose a fully response-based incremental distillation method focusing on learning response from detection bounding boxes and classification predictions. Firstly, our method transferring category knowledge while equipping student model with the ability to retain localization knowledge during incremental learning. In addition, we further evaluate the qualities of all locations and provides valuable response by adaptive pseudo-label selection (APS) strategies. Finally, we elucidate that knowledge from different responses should be assigned with different importance during incremental distillation. Extensive experiments conducted on MS COCO demonstrate significant advantages of our method, which substantially narrow the performance gap towards full training.