The explosive growth of data results in more scarce spectrum resources. It is important to optimize the system performance under limited resources. In this paper, we investigate how to achieve weighted throughput (WTP) maximization for cell-free (CF) multiuser MIMO (MU-MIMO) multicarrier (MC) systems through resource allocation (RA), in the cases of finite blocklength (FBL) and infinite blocklength (INFBL) regimes. To ensure the quality of service (QoS) of each user, particularly for the block error rate (BLER) and latency in the FBL regime, the WTP gets maximized under the constraints of total power consumption and required QoS metrics. Since the channels vary in different subcarriers (SCs) and inter-user interference strengths, the WTP can be maximized by scheduling the best users in each time-frequency (TF) resource and advanced beamforming design, while the resources can be fully utilized. With this motivation, we propose a joint user scheduling (US) and beamforming design algorithm based on the successive convex approximation (SCA) and gene-aided (GA) algorithms, to address a mixed integer nonlinear programming (MINLP) problem. Numerical results demonstrate that the proposed RA outperforms the comparison schemes. And the CF system in our scenario is capable of achieving higher spectral efficiency than the centralized antenna systems (CAS).