This article delves into advancements in resource allocation techniques tailored for systems utilizing reconfigurable intelligent surfaces (RIS), with a primary focus on achieving low-complexity and resilient solutions. The investigation of low-complexity approaches for RIS holds significant relevance, primarily owing to the intricate characteristics inherent in RIS-based systems and the need of deploying large-scale RIS arrays. Concurrently, the exploration of robust solutions aims to address the issue of hardware impairments occurring at both the transceivers and RIS components in practical RIS-assisted systems. In the realm of both low-complexity and robust resource allocation, this article not only elucidates the fundamental techniques underpinning these methodologies but also offers comprehensive numerical results for illustrative purposes. The necessity of adopting resource allocation strategies that are both low in complexity and resilient is thoroughly established. Ultimately, this article provides prospective research avenues in the domain of low-complexity and robust resource allocation techniques tailored for RIS-assisted systems.