Future wireless services, such as the metaverse require high information rate, reliability, and low latency. Multi-user wireless systems can meet such requirements by utilizing the abundant terahertz bandwidth with a massive number of antennas, creating narrow beamforming solutions. However, existing solutions lack proper modeling of channel dynamics, resulting in inaccurate beamforming solutions in high-mobility scenarios. Herein, a dynamic, semantically aware beamforming solution is proposed for the first time, utilizing novel artificial intelligence algorithms in variational causal inference to compute the time-varying dynamics of the causal representation of multi-modal data and the beamforming. Simulations show that the proposed causality-guided approach for Terahertz (THz) beamforming outperforms classical MIMO beamforming techniques.