The infrequent occurrence of overfit in deep neural networks is perplexing. On the one hand, theory predicts that as models get larger they should eventually become too specialized for a specific training set, with ensuing decrease in generalization. In contrast, empirical results in image classification indicate that increasing the training time of deep models or using bigger models almost never hurts generalization. Is it because the way we measure overfit is too limited? Here, we introduce a novel score for quantifying overfit, which monitors the forgetting rate of deep models on validation data. Presumably, this score indicates that even while generalization improves overall, there are certain regions of the data space where it deteriorates. When thus measured, we show that overfit can occur with and without a decrease in validation accuracy, and may be more common than previously appreciated. This observation may help to clarify the aforementioned confusing picture. We use our observations to construct a new ensemble method, based solely on the training history of a single network, which provides significant improvement in performance without any additional cost in training time. An extensive empirical evaluation with modern deep models shows our method's utility on multiple datasets, neural networks architectures and training schemes, both when training from scratch and when using pre-trained networks in transfer learning. Notably, our method outperforms comparable methods while being easier to implement and use, and further improves the performance of competitive networks on Imagenet by 1\%.