In many multi-microphone algorithms for noise reduction, an estimate of the relative transfer function (RTF) vector of the target speaker is required. The state-of-the-art covariance whitening (CW) method estimates the RTF vector as the principal eigenvector of the whitened noisy covariance matrix, where whitening is performed using an estimate of the noise covariance matrix. In this paper, we consider an acoustic sensor network consisting of multiple microphone nodes. Assuming uncorrelated noise between the nodes but not within the nodes, we propose two RTF vector estimation methods that leverage the block-diagonal structure of the noise covariance matrix. The first method modifies the CW method by considering only the diagonal blocks of the estimated noise covariance matrix. In contrast, the second method only considers the off-diagonal blocks of the noisy covariance matrix, but cannot be solved using a simple eigenvalue decomposition. When applying the estimated RTF vector in a minimum variance distortionless response beamformer, simulation results for real-world recordings in a reverberant environment with multiple noise sources show that the modified CW method performs slightly better than the CW method in terms of SNR improvement, while the off-diagonal selection method outperforms a biased RTF vector estimate obtained as the principal eigenvector of the noisy covariance matrix.