Conditioning image generation on specific features of the desired output is a key ingredient of modern generative models. Most existing approaches focus on conditioning the generation based on free-form text, while some niche studies use scene graphs to describe the content of the image to be generated. This paper explores novel methods to condition image generation that are based on object-centric relational representations. In particular, we propose a methodology to condition the generation of a particular object in an image on the attributed graph representing its structure and associated style. We show that such architectural biases entail properties that facilitate the manipulation and conditioning of the generative process and allow for regularizing the training procedure. The proposed framework is implemented by means of a neural network architecture combining convolutional operators that operate on both the underlying graph and the 2D grid that becomes the output image. The resulting model learns to generate multi-channel masks of the object that can be used as a soft inductive bias in the downstream generative task. Empirical results show that the proposed approach compares favorably against relevant baselines on image generation conditioned on human poses.